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Abstract

This paper presents the ITC’02 SOC Test Benchmarks. The purpose of this new benchmark set is to stimulate research into new
methods and tools for modular testing of SOCs and to enable the objective comparison of such methods and tools with respect to
effectiveness and efficiency. The paper defines the benchmark format and naming scheme, and presents the benchmark SOCs. In
addition, it provides an overview of the research problems that can be addressed and evaluated by means of this benchmark set. These
research problems include the design of optimized test access infrastructures and test schedules.

1 Introduction

Integrated circuits (ICs) continue to grow in size and complexity. To-
day, it is possible to integrate the functionality of a complete system
onto one single die. Such an IC is often referred to as a system-on-
chip (SOC). The test development process for these ‘monster chips’ is
challenging [1], both due to the fact that SOCs typically contain a very
heterogeneous mix of circuit structures and design styles, as well as due
to the sheer size of SOCs. Modular test development is therefore an
attractive proposition for SOCs [2].

SOCs are increasingly designed by embedding pre-designed and pre-
verified modules, or cores. These embedded cores facilitate the import
of specialized design expertise and reduce the SOC design time. Many
embedded cores have a non-logic circuit structure; examples are em-
bedded memories, embedded analog modules, and embedded FPGAs.
These circuit structures exhibit different defect behavior, and hence de-
mand dedicated tests. Furthermore, for many (logic) cores, the core
provider does not reveal the implementation of the core, in order to pro-
tect the intellectual property of the design. In those cases, the system
integrator has insufficient information about the core’s implementation
to creat high-quality tests, and hence is forced to apply the tests as pro-
vided with the core.

However, also for logic modules whose implementation is known, it
pays off to adopt a modular test development process, instead of cre-
ating the test patterns in one SOC top-level test generation tool run.
Modular test development enables a ‘divide-and-conquer’ test genera-
tion approach, which contains the hard-to-test parts of the SOC to one
or a few modules only. Typically, this has positive effects on both the

test generation run times, as well as on the test data volume. This effect
is multiplied when (last-minute) design changes force test generation it-
erations. Furthermore, a modular test approach enables test reuse. This
especially pays off if a module is used in multiple SOCs, or if subse-
quent SOC designs are relatively similar (the ‘family’ concept); both
situations are actually quite common.

Modular testing requires test access to the module-under-test. Typically,
these modules are deeply embedded in the SOC, and due to their sur-
rounding circuitry, direct access from the SOC pins to the module ter-
minals is not possible. In order to be able to test an embedded module as
a stand-alone unit, it should be isolated from its surrounding circuitry
and electrical test access needs to be provided. Among the research
challenges in SOC testing are the (automated) design of a test access
infrastructure and corresponding test schedule that meet all test require-
ments, and minimizes test application time, required ATE resources,
silicon area, power dissipation during test, etc.

Early publications in this emerging research domain have so far suffered
from the lack of a common set of benchmark SOCs. Many academic
researchers do not have access to realistic data regarding such circuits.
Only a few researchers have obtained industrial data to work with, but
often that data was provided on an exclusive basis, which does not al-
low the objective comparison of different competing approaches and
techniques.

In this paper we present a new set of benchmarks that aims at addressing
the needs mentioned above. Named the ITC’02 SOC Test Benchmarks,
the set of SOC benchmarks is intended to stimulate research into new
methods and tools for modular testing of core-based SOCs and to en-
able the objective comparison of such methods and tools with respect to

�
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effectiveness and efficiency. This paper describes the SOC benchmarks
and provides an overview of the type of research questions that can be
addressed and evaluated by means of this benchmark set.

While the set of benchmarks presented in this paper addresses a press-
ing need in the SOC test research community, it is important to recog-
nize that their use is limited in scope to problems that involve modular
testing of SOCs. These benchmarks are intended neither for the eval-
uation of methods that require the internal details of the SOC imple-
mentation, such as fault modeling, fault diagnosis, and test generation
using merged cores, nor for the evaluation of methods that require the
detailed values of the test pattern sets, such as test data compression
techniques. Nevertheless, this limitation does not undermine the value
of these benchmarks in any way. Modular core-based SOC testing is be-
coming increasingly popular, and there has been a surge in the number
of research papers published on this topic in the past few years [3]. The
ITC’02 SOC Test Benchmarks will therefore be especially welcomed
by this growing research community.

The sequel of this paper is organized as follows. Section 2 briefly re-
views previous benchmarking initiatives. In Section 3, we describe the
format of our benchmark data and illustrate this with an example. Sec-
tion 4 explains the naming convention for our benchmark SOCs. Sec-
tion 5 presents the set of benchmark SOCs and lists several of their key
features. In Section 6, we present a classification of problems and re-
lated prior work in SOC test automation, for which these benchmark
SOCs can be useful. Section 7 concludes this paper.

2 Prior Work in Benchmarks

Benchmark circuits have been used for many years to allow objective
comparison of methods and tools. In the domain of testing integrated
circuits, the ISCAS’85 and ISCAS’89 benchmark sets are probably the
best-known and most-used sets of benchmarks. The ISCAS’85 bench-
marks were first presented by Brglez and Fujiwara [4]. They con-
sist of 10 combinational digital circuits in gate-level netlist represen-
tation. The benchmarks can be downloaded through the Internet at
[5]. The ISCAS’89 benchmarks were first presented by Brglez, Bryan,
and Kozminski [6]. They consist of 31 sequential digital circuits in
gate-level netlist representation. The benchmarks can be downloaded
through the Internet at [7]. As the full gate-level implementation of
these benchmark circuits is provided, they have been used for a wide
range of research problems, including automatic test pattern generation,
fault simulation, and test data compression. The homogeneous charac-
ter of the combined ISCAS’85 and ISCAS’89 benchmarks makes them
very suited for comparing methods or tools for a list of circuits. The
main drawback of the ISCAS benchmarks is that they are outdated. Al-
though realistic in size and complexity at the time they were released,
the ISCAS circuits do not represent today’s multi-million gate SOC de-
signs. Modern SOCs are designed at register-transfer level (RTL), con-
tain embedded modules such as memories and analog modules, have
multiple clock domains, and bidirectional signals and tri-state buses,
and none of this exists in the ISCAS benchmarks.

The ITC’99 Benchmarks initiative by Davidson [8, 9] was an attempt
to create a new set of benchmarks for the test research community that
would overcome the abovementioned drawbacks of the ISCAS bench-
marks. The result was a rather heterogeneous and unwieldy set of

around thirty benchmarks. Some are from academic sources, others
are from industrial sources; a few are combinational, most are sequen-
tial; some are gate-level netlists, others RTL source code; some include
embedded memories, others do not; some are freely available, others re-
quire signing a so-called Community Source License. The benchmarks
can be downloaded from the Internet at [10].

Many more sets of benchmark circuits are available through the web
site of the Collaborative Benchmarking Laboratory at North Carolina
State University: http://www.cbl.ncsu.edu/.

In the benchmark initiative presented in this paper, we tried to combine
the strengths of both the ISCAS and ITC’99 benchmark sets. On the one
hand, we strive for a homogeneous set of circuits. The type of informa-
tion provided for the SOCs should be the same, so that if one SOC can
be used to obtain experimental results in a particular research project,
all other SOCs can be used as well. In this way, research results can
be presented on a set of SOCs, hence giving more statistical validity to
the conclusions based on the experimental results. On the other hand,
we want circuits that are representative for today’s SOC designs. An
additional goal is to restrict the amount of intellectual property released
through the benchmark data, such that companies can relatively easily
contribute to the benchmark set the data of one or more of their real-life
SOC designs. The information released should of course be such that
useful research problems can still be addressed by means of these cir-
cuits. In the next section we detail the exact benchmark format, which
shows what information is contained in our benchmark data.

3 Benchmark Format

The benchmark format contains the following information per SOC.

� The SOC name according to the naming convention in Section 4.
� The total number of modules in the SOC.
� Global settings that specify whether or not the optional data for

layout position and power dissipation are provided.
� Per module in the SOC:

– The level in the design hierarchy.

– The number of input, output, and bidirectional terminals.

– The number of scan chains and their lengths.

– The absolute layout location of the core (optional).

– The total number of tests.

– Per test:
� Whether or not this test uses the module-internal scan

chains and/or the core-external Test Access Mecha-
nism (TAM).

� The number of test patterns.
� The power dissipation (optional).

This section describes the benchmark format in detail. First, we explain
how a multi-level design hierarchy is expressed in the benchmark for-
mat. Subsequently, we give a short description of all keywords used in
the benchmark format. Finally, we illustrate the format by means of an
example SOC.
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3.1 SOC Design Hierarchy

Our SOC benchmark format supports the description of multiple levels
of design hierarchy. We can describe the embedding of cores within
cores. The format also supports SOC design in which only some pre-
designed cores are used, and the remaining SOC circuitry is intercon-
nect wiring, glue logic, and/or user-defined blocks.

A uniform description of the SOC hierarchy is enabled by using the
term ‘Module’ to denote each SOC component that is tested as a stand-
alone unit. The SOC itself, i.e., the top-level design unit, is a module.
It contains the non-core circuitry. Other modules are embedded in this
top-level model. These modules can be pre-designed embedded cores,
but also user-defined modules, of which the circuit structure and/or size
justify stand-alone testing. And these modules can in their turn contain
again other modules, etc.

In order to express the design hierarchy in the benchmark format, we
use the keywords Module and Level. The top-level SOC design is
named ‘Module 0’. The other modules get assigned consecutive mod-
ule numbers, based on a depth-first traversal of the design hierarchy
tree. The levels correspond with the depth in the design hierarchy tree.
‘Module 0’ has by definition ‘Level 0’, whereas a module embedded in
a module of ‘Level � ’ has ‘Level � ���

’.

Figure 1(a) shows an example modular SOC design, containing seven
modules. The corresponding design hierarchy tree, consisting of four
levels, is shown in Figure 1(b). The corresponding ‘Level’ and ‘Mod-
ule’ names are added in the figure.

Module 0

Module 1

Module 3

Module 4

Module 5

Module 6

Module 2
Module 0

Module 1 Module 2

Module 3

Module 4

Module 5

Module 6

Level 0

Level 1

Level 2

Level 3

(a) (b)

Figure 1: Example modular SOC design (a) and the corresponding
module hierarchy tree (b).

3.2 Keywords

The benchmark format uses keywords with the following meaning.

� SocName: Uniquely identifying name of the SOC, determined
from the description in Section 4.

� TotalModules: Total number of modules in this SOC. (A
module is either the SOC itself or an embedded core.)

� Options: The benchmark format contains both mandatory and
optional data. The optional data is XY and Power. If for a cer-
tain type of optional data the value ‘0’ is listed here, this means
that none of the modules of the SOC has this optional data pro-
vided. In case the value ‘1’ is listed, it means that for some or all
modules, this data is specified.

For each module, the following information is specified.

� Module: Module number. The SOC itself is Module 0. Sub-
sequent modules in the depth-first traversal of the design hierar-
chy tree get assigned subsequent module numbers.

� Level: The level of this module in the SOC design hierarchy.
Level 0 refers to the top of the design hierarchy. If a Mod-
ule � has Level n (for ����� ), this means that � is embed-
ded in the module of level �
	 �

with the largest module number
smaller than � .

� Inputs, Outputs, Bidirs: The numbers of input-only,
output-only, and bidirectional terminals of the module.

� ScanChains N : l � l ���� l � : The number � of scan
chains of this module, and the lengths ��� , in scan flip flops, of
these � scan chains. In case the module has no scan chains, the
format is: ScanChains 0 :.

� X, Y: The ����� -coordinate of the center of a core on the SOC
layout. ����� -coordinates are expressed as non-negative integers.
The unit and the ������� � origin of the coordinates are not specified;
however, they should be the same for all modules throughout
one SOC benchmark. The fact that all ����� -coordinates should
be non-negative integers, means that the �����!� � origin cannot be
located inside the SOC die itself. For modules in a design hi-
erarchy, the absolute ����� -coordinates on the SOC layout are
mentioned, not the relative ones. This information is optional. It
can be omitted for individual or for all modules of the SOC. In
case ����� -coordinates are not specified for an individual core,
they are listed as ‘-1’.

� TotalTests: The number of separate tests for the module.

Per test, the following is listed.

� Test: The test number for this module. Numbering is consecu-
tive, starts at 1, and ends at TotalTests.

� ScanUse: This is a binary variable (0/1), that specifies whether
or not this test uses the module-internal scan chains. If ‘0’, the
module-internal scan chains are not used; if ‘1’, the module-
internal scan chains are used. It is mandatory to specify this
parameter (even though it has no meaning in case the module
has no internal scan chains). The setting of this parameter typi-
cally influences the number of clock cycles needed to apply one
test pattern.

� TamUse: This is a binary variable (0/1), that specifies whether
or not this test uses a core-external Test Access Mechanism
(TAM) [2]. If ‘0’, such a TAM is not used; if ‘1’, a TAM is
used. It is mandatory to specify this parameter. For tests for
which the stimuli are generated outside the module-under-test
and/or the responses are observed outside the module-under-test,
a TAM is utilized during the test for transportation of stimuli and
responses. This is typically the case for external testing (from
an ATE), and also for BIST (Built-In Self Test) implementations
for which the BIST engine resides outside the module-under-test.
For BIST implementations for which the BIST engine resides in-
side the core, typically an external TAM is not utilized during the
execution of the BIST. In such cases, the TAM bandwidth might
be utilized to test another core at the same time.
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� Patterns: The number of test patterns for this test. One test
pattern is defined as one coherent set of stimuli and correspond-
ing responses. For scan testing, one test pattern includes a full
load, apply, and unload of the scan chains involved.

� Power: Power dissipation per test. Power is expressed as a non-
negative integer. The nature (average, peak, otherwise) and unit
of power are not specified, but should be the same for all modules
throughout one SOC benchmark. This information is optional. It
can be omitted for individual or for all modules of the SOC. In
case power values are not specified for an individual core test,
they are listed as ‘-1’.

3.3 Example

Figure 2 illustrates the benchmark format by means of an example SOC,
named x847.

SOC x847 in Figure 2 has 35 lines with text and some blank lines.
Please note that the line numbers are not part of the format, but are
added here for explanation purposes only. The benchmark format al-
lows to insert blank lines; typically, this will be used to distinguish be-
tween the various module descriptions.

The first three lines provide general information of this SOC. Line 01
says that the SOC name is ‘x847’. Line 02 specifies that the total num-

Example 1 [x847.soc]

01 SocName x847
02 TotalModules 7
03 Options Power 1 XY 1

04 Module 0 Level 0 Inputs 312 Outputs 312 Bidirs 0 ScanChains 2 : 54 43
05 Module 0 X -1 Y -1
06 Module 0 TotalTests 2
07 Module 0 Test 1 ScanUse 1 TamUse 0 Patterns 43 Power 128
08 Module 0 Test 2 ScanUse 0 TamUse 0 Patterns 32 Power 537

09 Module 1 Level 1 Inputs 10 Outputs 11 Bidirs 12 ScanChains 4 : 20 21 22 23
10 Module 1 X 678 Y 123
11 Module 1 TotalTests 3
12 Module 1 Test 1 ScanUse 1 TamUse 1 Patterns 567 Power 576
13 Module 1 Test 2 ScanUse 1 TamUse 1 Patterns 876 Power 275
14 Module 1 Test 3 ScanUse 0 TamUse 1 Patterns 908 Power 123

15 Module 2 Level 1 Inputs 44 Outputs 46 Bidirs 0 ScanChains 1 : 100
16 Module 2 X 324 Y 98
17 Module 2 TotalTests 2
18 Module 2 Test 1 ScanUse 1 TamUse 1 Patterns 4356 Power 1334
19 Module 2 Test 2 ScanUse 1 TamUse 1 Patterns 56 Power 2245

20 Module 3 Level 2 Inputs 312 Outputs 312 Bidirs 0 ScanChains 2 : 75 75
21 Module 3 X 304 Y 80
22 Module 3 TotalTests 1
23 Module 3 Test 1 ScanUse 1 TamUse 1 Patterns 25 Power -1

24 Module 4 Level 3 Inputs 112 Outputs 543 Bidirs 23 ScanChains 0 :
25 Module 4 X -1 Y -1
26 Module 4 TotalTests 1
27 Module 4 Test 1 ScanUse 1 TamUse 0 Patterns 12 Power -1

28 Module 5 Level 2 Inputs 312 Outputs 312 Bidirs 0 ScanChains 2 : 75 75
29 Module 5 X 344 Y 80
30 Module 5 TotalTests 1
31 Module 5 Test 1 ScanUse 1 TamUse 1 Patterns 25 Power -1

32 Module 6 Level 3 Inputs 112 Outputs 543 Bidirs 23 ScanChains 0 :
33 Module 6 X -1 Y -1
34 Module 6 TotalTests 1
35 Module 6 Test 1 ScanUse 1 TamUse 0 Patterns 12 Power -1

Figure 2: Example benchmark SOC x847.
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ber of modules in this SOC is seven. Options in Line 03 lists whether
power and layout co-ordinate values for modules are supplied for this
benchmark SOC. Both options are listed as ‘1’, which means that both
����� layout coordinates and power dissipation values are specified for
one or more modules.

The next 33 lines describe the seven modules in the SOC. Lines 04–
08 describe Module 0. Module 0 has Level 0, which means that
Module 0 is the top-level module. This is in fact always the case for
Module 0. Module 0 has 312 inputs, 312 outputs, and 0 bidirectional
terminals; as Module 0 is the top-level SOC design, these terminals di-
rectly correspond to SOC pins. Module 0 contains two scan chains, of
lengths 54 and 43 scan flip flops, respectively. Line 05 shows that no
����� layout coordinates are specified for Module 0. Module 0 has two
tests. Test 1 is specified in Line 07. It uses the module-internal scan
chains; these are the two scan chains specified in Line 04. Test 1 does
not use a TAM. For the top-level module, this is normal; the terminals
of the top-level module are SOC pins, and hence test stimuli and re-
sponses for this module do not need to be transported over a TAM first.
Test 1 has 43 test patterns and dissipates 128 units of power. Test 2 of
Module 0 is specified in Line 08. It (as expected) does not use a TAM,
but also does not use the module-internal scan chains; perhaps this is a
functional test, as opposed to a structural scan test. Test 2 has 32 test
patterns and dissipates 537 units of power.

Lines 09–14 describe Module 1. Its level is 1, which means that Mod-
ule 1 is embedded within Module 0. Module 1 has 10 inputs, 11 outputs,
and 12 bidirectional terminals. Module 1 has four scan chains, of 20,
21, 22, and 23 scan flip flops long respectively. The X co-ordinate is
given as 678 units and the Y co-ordinate is given as 123 units. Mod-
ule 1 has three tests; All three use a TAM; the first two tests also use the
module-internal scan chains, while Test 3 does not do this. Test 1 has
567 test patterns, and dissipates 576 units of power. Test 2 has 876 test
patterns, and dissipates 275 units of power. Test 3 has 908 test patterns,
and dissipates 123 units of power. It does not use the module-internal
scan chains, but still depends on a module-external TAM to deliver the
test data to and from the module.

Modules 2 till 6 are described in the sequel of the example. Modules 4
and 6 do not contain scan chains. Therefore, the parameter ScanUse
becomes irrelevant for their tests. The tests of these modules also do
not use a TAM, as their parameter TamUse is specified as ‘0’. Mod-
ules 4 and 6 are probably non-logic cores that are tested by means of an
internal BIST.

From the order in which the modules of x847 are specified and their
level information, we can establish that the design hierarchy of x847
is as depicted in Figure 1. Careful inspection of Figure 2 shows that
Module 3, containing Module 4, has the same properties as Module 5,
containing Module 6. This might be due to the fact that Modules 3 and
5 are equal, or, in other words, that Module 2 contains two instances of
the same core (although this is not guaranteed by the benchmark for-
mat).

4 Benchmark Naming

We have adopted a naming scheme for the benchmark SOCs. Rather
than simply numbering the benchmark circuits, as was done in [10],
we have chosen for more meaningful names of the SOCs. The adopted
naming scheme is inspired by the naming conventions of the ISCAS’85
and ISCAS’89 benchmarks [4, 6] and the naming scheme used for
Philips circuits for which experimental research results have been pub-
lished [11]. For the ISCAS benchmarks, the first letter is either ‘c’
or ‘s’, and it indicates whether the benchmark is combinational or se-
quential in nature. The subsequent number lists the number of nets in
the circuit and hence is for many applications representative of the size
and complexity of the benchmark circuit for the problem at hand. The
names of previously-published Philips circuits all started with a letter
‘p’, referring to Philips. The distinction between combinational and se-
quential circuits was superfluous, as virtually all industrial circuits are
sequential anyway. The subsequent number was also the number of nets
in the circuit.

The names assigned to our benchmark SOCs consist of one letter, fol-
lowed by a number. The letter represents the origin of the benchmark.
For example: the letter ‘d’ refers to Duke University, and the letter ‘p’
refers to Philips. Letters have been (and continue to will be) given out
to benchmark contributors on a first-come-first-serve basis. This nam-
ing scheme is not guaranteed to be conflict free, but we resolve name
conflicts in an ad-hoc manner whenever they occur. Three letters have
a ‘reserved meaning’.

� We are not using the letters ‘c’ and ‘s’, in order to avoid confu-
sion with the well-known ISCAS’85 and ISCAS’89 benchmark
circuits.

� The letter ‘x’ is reserved for SOC benchmark contributors who
want to remain anonymous.

The subsequent number is a positive integer, meant to give an indication
of the test complexity of the SOC. The number is calculated based on
a formula first published in [12]. Let � be the set of module tests.
For Test ����� and corresponding Module � ���!� , the formula uses
the numbers of primary inputs ���
	��� , primary outputs ���
	��� , bidirec-
tional terminals ���
	��� , scan chains ����	��� , internal scan chain lengths
� �
	����� � ��� �
	����� � ���  �!� �
	����� ��� ��!#" , the binary parameters for ScanUse��$ � and TamUse ��$ � , and the test pattern count % � . The formula that
calculates the SOC number is as follows.

&(' � ' *) ��+�, ��$ � -% � /.����
	��� � ����	��� � ���
	��� � ��$ � *) � � ��!�"0�1 � �2�
	����� 043
� � ��� � � 5

The scaling factor 1/10,000 is used to shorten the (often large) SOC
test complexity number obtained from the formula, in order to make it
easier to use.
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5 Benchmark Set

The set of benchmarks are published through the Internet at the follow-
ing URL: http://www.extra.research.philips.com/itc02socbenchm/ .

Currently, the ITC’02 SOC Test Benchmark set consists of twelve
benchmarks. We intend to continue to accept new contributions, as well
as keep the benchmark data available.

Nine companies and institutions have contributed SOCs to the set.

� a: Analog Devices – Austin, TX, U.S.A.
� d: Duke University – Durham, NC, U.S.A.
� f: Faraday Technologies – Hsinchu, Taiwan.
� g: Jiri Gaisler and University of Stuttgart – Stuttgart, Germany.
� h: National Tsing Hua University – Hsinchu, Taiwan.
� p: Philips Electronics – Eindhoven, The Netherlands.
� q: Hewlett-Packard – Shrewsbury, MA, U.S.A.
� t: Texas Instruments – Bangalore, India.
� u: Universidade Federal do Rio Grande do Sul – Porto Alegre,

RS, Brazil.

Table 1 lists the main characteristics of the SOCs. This table is orga-
nized as follows. Column 1 gives the names of the SOCs. In Column 2,
the number of modules (including Module 0, the top-level SOC design
itself) is listed. Column 3 lists the number of design hierarchy levels, in-
cluding the top-level of Module 0; in our benchmark SOCs so far, these
are either two or three. Two levels indicates there is the top-level SOC
with modules embedded in it. In the case of three levels, we also have
modules embedded inside embedded modules. Column 4 lists the total
number of I/O terminals in the SOC; this is the sum of the I/O counts of
all modules. Column 5 shows the total number of scan flip flops in the
SOC; this is the sum of the scan chain lengths of all modules. Column 6
lists the total sum of the test pattern counts of all tests. Note that a high
pattern count does not directly translate into a large test time. Some
tests have few test patterns, but utilize very long scan chains, whereas
other tests have many patterns, but do not use scan chains at all.

SOC Number of
Modules Levels � I/Os � SFFs � Test Patterns

u226 10 2 376 1040 5148569
d281 9 2 2931 882 8818
d695 11 2 1845 6384 881
h953 9 2 929 4657 1100
g1023 15 2 3707 1546 2349
f2126 5 2 1597 13996 962
q12710 5 2 13167 12991 4612
p22810 29 3 4283 24723 24890
p34392 20 3 2057 20948 66349
p93791 33 3 6943 89973 22987
t512505 31 2 8663 68051 10479
a586710 8 3 3755 37656 10850894

Table 1: Some general characteristics of the ITC’02 SOC Test Benchmarks.

Table 2 lists the main characteristics of the module tests of the SOCs.
Column 1 again lists the names of the SOCs. In Column 2, the summed
number of tests over all modules is shown Typically, there is at least
one test per module. For some SOCs, no test for Module 0 has been
specified. Some SOCs have cores with more than one test per module.
In Columns 3, 4, and 5, the minimum, average, and maximum number

of test patterns per test is listed. Note that a high pattern count does
not directly implies a large test time. The test time is dependent on the
number of test patterns times the number of clock cycles it takes to load
and unload one test pattern. Some tests have very many test patterns,
but do not have module-internal scan chains (“ScanChains 0:”) or
do not use them (“ScanUse 0”), and hence their test time is still mod-
erate. Other tests have only few test patterns, but utilize very long scan
chains.

SOC � Tests Pattern Count
Minimum Average Maximum

u226 9 15 572063 1363968
d281 15 26 588 2048
d695 10 12 88 234
h953 8 9 138 341
g1023 14 15 168 1024
f2126 4 103 241 422
q12710 4 852 1153 1314
p22810 30 1 830 12324
p34392 21 11 3159 12336
p93791 32 11 718 6127
t512505 30 3 349 3370
a586710 7 2945 1550128 6029308

Table 2: Some test characteristics of the ITC’02 SOC Test Benchmarks.

Table 3 lists the main characteristics of the scan chains in the modules
of the SOCs. Column 1 again lists the names of the SOCs. In Col-
umn 2, the summed number of scan chains over all modules is shown.
In Columns 3, 4, and 5, the minimum, average, and maximum length of
any of these scan chains (counted in scan flip flops) is listed.

SOC � Scan Chains Scan Chain Length
Minimum Average Maximum

u226 20 52 52 52
d281 34 7 26 32
d695 137 32 46 55
h953 28 21 166 348
g1023 35 9 44 84
f2126 26 318 538 1000
q12710 13 413 999 1689
p22810 196 1 126 400
p34392 63 8 332 806
p93791 522 1 172 521
t512505 64 10 1063 1669
a586710 16 2141 2354 2548

Table 3: Some scan chain characteristics of the ITC’02 SOC Test Benchmarks.

Figures 3 and 4 provide more details on the scan chains of three of
the benchmark circuits. Figure 3 shows the number of scan chains
per module (for those modules that do contain scan chains) for SOCs
p22810, p34392, and p93791. For the same SOCs, Figure 4 shows the
minimum (light blue), average (dark red), and maximum (light yellow)
scan chains lengths per module as stacked bar charts. From these fig-
ures, we can judge that the benchmark set contains quite diverse SOCs.
SOC p22409 contains 29 modules, of which 22 (= 76%) contain scan
chains, whereas for SOC p34392 only 4 out of the 20 modules (= 20%)
contain scan chains. The number of scan chains per module varies
widely for SOC p22409, while almost all modules of SOC p93791 have
46 scan chains. For some SOCs, the scan chains per module are nicely
balanced, such that there is little variation in minimum, average, and
maximum scan chain length, whereas for other SOCs that is not the
case. These characteristics can have a large impact on the effectiveness
of test architecture optimization techniques [13].



A Set of Benchmarks for Modular Testing of SOCs 7

p22810 p34392 p93791

Figure 3: Number of scan chains per module for SOCs p22810, p34392, and p93791.

p22810 p34392 p93791

Figure 4: Minimum, average, and maximum scan chain lengths per module for SOCs p22810, p34392, and p93791.

6 Classification of Problems and Prior
Work in SOC Test Automation

The SOC benchmarks presented in this paper are intended to be used for
research that addresses a wide range of problems in modular testing of
SOCs. In this section, we first present a classification of several of such
problems in SOC test automation. We then present a corresponding
listing of related prior work. Several of the papers in the prior work list-
ing already include experimental results for circuits similar to the SOC
benchmarks presented in this paper. However, very few papers actually
compare their solutions with competing research work using a common
set of benchmarks. The proposed benchmarks are intended to fill this
vital need; they will serve as experimental vehicles that can be used to
compare and contrast SOC test automation algorithms and tools.

Figure 5 presents a graphical classification of several problems in SOC
test automation. Note that this classification is by no means inclusive of
all the problems in SOC test automation; our list is not even inclusive
of all the problems for which the proposed benchmarks can be used.
The problems presented in this classification have been collected by
surveying the literature and are meant to be a stepping-stone to identify
areas of future research. The problems are classified into three broad
categories: (i) core test wrappers, (ii) test access mechanisms (TAMs),
and (iii) test scheduling. The category ‘TAM Design + Scheduling’
is derived by combining problems from the latter two categories. The
‘wrappers’ category is divided into wrapper design and wrapper opti-
mization subcategories. Here, we use the term design to denote actual
proposals for wrappers, such as the ‘test collar’ [14] or the IEEE P1500
SECT standard-under-development [15]. The term optimization is used

to refer to the process of determining the parameters of the wrapper for
a specific core, such that certain objectives are met while fulfilling cer-
tain constraints, e.g., test time minimization under a maximum TAM
width constraint. An example of a wrapper optimization approach can
be found in [16]. The ‘TAMs’ category is similarly divided into design
and optimization subcategories. For the first three broad categories of
problems presented in Figure 5, we list optimization objectives and con-
straints. For example, an objective of TAM optimization is to minimize
testing time, while a constraint of test scheduling is to ensure that the
maximum power consumption limit is not exceeded.

We now list brief descriptions of related prior work in SOC test au-
tomation. The numbers in this list correspond to the circled numbers in
Figure 5.

1. Test wrapper design. The test wrapper and TAM model of SOC
test access architectures was presented in [17]. A ‘test collar’
was proposed in [14] to be used as a test wrapper for cores and
to complement the test bus model for TAMs. The TESTSHELL

proposed in [18] is a similar wrapper, meant to be used in con-
junction with the TESTRAIL. The IEEE P1500 SECT Working
Group is working towards an industry-wide standard, but scal-
able wrapper [19].

2. Test wrapper optimization. The issue of efficient de-
serialization of test data by means of using balanced wrapper
scan chains was discussed in [20]. Heuristics for designing bal-
anced wrapper scan chains, based on approximation algorithms
for the well-known Bin Design problem were presented in [16].
The Design wrapper algorithm proposed in [21] has two priori-
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Figure 5: A classification of problems in SOC test automation.

ties: (i) minimizing core testing time , and (ii) minimizing the
TAM width required for the test wrapper. This algorithm is based
on the Best Fit Decreasing (BFD) heuristic for the Bin Packing
problem.

3. TAM design. A number of TAM designs have been proposed
in the literature. These include multiplexed access [22], partial
isolation rings [23], core transparency [24, 25, 26, 27], and a
hierarchical TAM structure [20]. Bus-based TAM proposals in-
clude reuse of the existing system bus [28], a dedicated scalable
tri-statable test bus [14], a scalable daisychain-able architecture
called TESTRAIL [18], and a P1500-compatible TAM known as
CAS-BUS [29]. In addition, the use of a single TAM design to
test both cores with TAPs and cores with test wrappers was pro-
posed in [30]. Dedicated and scalable TAMs appear to be the
most promising. In [31, 32], a hierarchical framework for BIST
scheduling, data pattern delivery and diagnosis was proposed.

4. TAM optimization. Several novel TAM architectures (i.e., mul-
tiplexing, daisy chaining and distribution) were proposed in [33].
The relationship between testing time and TAM widths using ILP
was examined in [34, 35], and TAM width optimization under
power and routing constraints was studied in [36, 37]. A genetic
algorithm was used for TAM optimization in [38].

5. Test scheduling. Several techniques for SOC test scheduling
have been proposed in the literature. These include combina-
torial optimization [39], test reordering for a large batch of ICs
[40], test protocol scheduling [41, 42], integer linear program-
ming [43], and power-constrained scheduling [44, 45, 46, 47, 48,
49]. Methods to incorporate precedence and power constraints in
a preemptive test schedule were presented in [50].

6. Integrated TAM optimization and test scheduling. Integrated
TAM optimization and test scheduling was first attempted in
[51, 52]. In [53, 54], rectangle packing approaches to schedule
tests were reported. Related recent work can be found in [55].

7. Integrated Wrapper/TAM co-optimization and test schedul-
ing. The first integrated method for wrapper/TAM co-

optimization was proposed in [21]. Exact methods and enumer-
ation were used to optimize a Test Bus Architecture, assuming
an arbitrary, but sequentially-ordered schedule of the cores per
test bus. In [56], efficient heuristic algorithms to solve the same
problem were presented. A rectangle packing approach was re-
ported in [57], and extended with precedence, power dissipation,
and preemption constraints in [58]. Effective and efficient opti-
mization algorithms for the TestRail Architecture were presented
in [13].

Additionally, a more complete listing of current and prior work can be
found at [3].

Several open problems in SOC test automation are listed here as fol-
lows.

� Minimization of the number of ATE buffer reloads during the
test for an SOC.

� Scheduling of interconnect tests (ExTest).
� Hierarchical TAM optimization – multi-level TAMs.
� Test scheduling for hierarchical SOCs.
� TAM width optimization to minimize routing overhead.

The proposed benchmarks are especially suitable for use in research that
addresses these problems.

7 Conclusion

In this paper, we have presented the ITC’02 SOC Test Benchmarks. This
set of benchmarks is intended to stimulate research into new meth-
ods and tools for modular testing of SOCs and to enable objective
comparison of the research results. The paper describes the bench-
mark format and naming scheme, and illustrates this by means of
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an example. The paper describes the current set of benchmarks and
some of their characteristics. The paper also provides a classifica-
tion of addressed and open research problems for which the bench-
marks can serve as test cases. The benchmark set currently con-
tains twelve SOCs, but might still grow in the future. The bench-
mark SOCs are freely available to anyone and can be downloaded from
http://www.extra.research.philips.com/itc02socbenchm/.
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